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INTRODUCTION 

Breast cancer represents a critical public health 

challenge globally, with approximately 2.3 

million new cases and 685,000 deaths annually 

according to WHO statistics[3]. Early 

detection and accurate diagnosis are 

paramount for improving patient survival rates 

and treatment outcomes. Traditional diagnostic 

methods rely heavily on radiologist expertise, 

introducing subjective bias and variability in 

interpretation[4]. 

Machine learning (ML) and artificial 

intelligence (AI) have revolutionized medical 

diagnosis by enabling automated, objective, 

and consistent analysis of medical images and 

clinical data[5]. However, individual machine 

learning algorithms often suffer from 

limitations including overfitting, high 

variance, and suboptimal generalization on 

unseen data. These challenges are particularly 

acute in the medical domain where data is 

limited, expensive to acquire, and the cost of 

false negatives (missed cancers) is extremely 

high[6]. 

Ensemble learning methodologies address 

these limitations by combining multiple 

diverse classifiers to produce superior 

predictive performance[7]. The fundamental 

principle behind ensemble methods rests on 

the concept that a diverse collection of models, 

when combined appropriately, can achieve 

lower error rates and better generalization than 

any individual model. This approach is 

analogous to seeking multiple medical 

opinions before treatment decisions[8]. 

Research Motivation 

The integration of ensemble methods with 

optimized feature engineering remains an 

underexplored area in breast cancer diagnosis. 

Most existing work focuses on either ensemble 

methods OR feature engineering 

independently, rather than investigating their 

synergistic combination[11]. This paper 

addresses this gap by proposing a unified 

intelligent framework that leverages both 

approaches to achieve state-of-the-art 

diagnostic performance. 

Research Contributions 

This research makes the following significant 

contributions: 
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framework utilizing PKIDiscretize discretization coupled with WrapperSubsetEval feature selection. 
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demonstrates significant performance improvements. The proposed ensemble voting approach achieves 

83.02% accuracy compared to 81.25% for the best individual classifier, representing a 2.92% improvement. 

Feature engineering further enhances diagnostic accuracy by 2-4% while achieving 53-63% dimensionality 

reduction. The ensemble classifier achieves superior evaluation metrics with TPR of 0.939, FPR of 0.323, 
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1. Novel Ensemble Architecture: 

Introduction of selective ensemble 

classification combining voting and 

stacking strategies for breast cancer 

diagnosis on benchmark 

mammography datasets[12]. 

2. Advanced Feature Engineering 

Framework: Development of a three-

phased feature selection methodology 

integrating PKIDiscretize 

discretization with 

WrapperSubsetEval for optimal 

feature subset identification[13]. 

3. Comprehensive Experimental 

Validation: Rigorous evaluation on 

three benchmark datasets (Wisconsin 

Breast Cancer Database, BCDR-F03, 

and BCDR-D01) with multiple 

performance metrics including 

accuracy, TPR, FPR, and AUC[14]. 

4. Clinical Applicability: Demonstration 

of improved diagnostic accuracy and 

reduction in false positive rates, 

directly addressing clinical 

requirements for breast cancer 

detection systems[15]. 

LITERATURE REVIEW 

Ensemble Learning in Medical Diagnosis 

Ensemble methods have emerged as powerful 

techniques for improving classification 

performance across diverse medical 

applications[16]. Zhou et al. (2012) 

demonstrated that ensemble approaches 

consistently outperform individual classifiers 

through variance reduction and error 

correction mechanisms[17]. Kuncheva and 

Whitaker (2003) provided theoretical 

foundations for ensemble diversity, 

emphasizing that optimal performance 

requires both accuracy and diversity among 

base learners[18]. 

In the context of cancer diagnosis, Breiman 

(2001) introduced Random Forests as an 

ensemble of decision trees that effectively 

manages high-dimensional medical data[19]. 

Schapire and Freund (2012) developed 

AdaBoost, a sequential ensemble method that 

focuses computational effort on difficult-to-

classify instances[20]. 

Feature Engineering and Dimensionality 

Reduction 

High-dimensional medical datasets present 

significant challenges including increased 

computational complexity, overfitting risk, 

and the curse of dimensionality[21]. Principal 

Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) represent 

classical approaches to dimensionality 

reduction[22]. However, wrapper-based 

feature selection methods have demonstrated 

superior performance in maintaining 

classification accuracy while achieving 

substantial dimensional reduction[23]. 

Guyon and Elisseeff (2003) provided 

comprehensive analysis of feature selection 

methods, distinguishing between filter and 

wrapper approaches[24]. They emphasized 

that feature selection performance is inherently 

algorithm-dependent, supporting the adoption 

of wrapper methods when computational 

resources permit[25]. 

Breast Cancer Diagnosis Applications 

Multiple studies have applied machine 

learning to breast cancer diagnosis using 

mammography and other imaging 

modalities[26]. Simonyan and Zisserman 

(2014) demonstrated the effectiveness of deep 

convolutional neural networks on medical 

image classification[27]. However, traditional 

machine learning approaches remain 

competitive and interpretable for clinical 

applications[28]. 

The Wisconsin Breast Cancer Database, 

BCDR-F03, and BCDR-D01 datasets 

represent benchmark resources for evaluating 

diagnostic algorithms[29]. These datasets 

provide biopsy-proven ground truth labels and 

comprehensive feature sets derived from 

mammography images[30]. 

PROPOSED METHODOLOGY 

System Architecture Overview 

Our intelligent healthcare system comprises 

three primary modules: (1) Data Preprocessing 

and Feature Extraction, (2) Ensemble 

Classifier Development, and (3) Advanced 

Feature Engineering. These modules operate 

synergistically to achieve optimal diagnostic 

performance. 

Mathematical Foundation: 

Let 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)} 
represent the dataset where 𝑥𝑖 ∈ ℝ𝑑  are 

feature vectors and 𝑦𝑖 ∈ {0,1} are class labels 

(benign vs. malignant). 
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Ensemble Learning Framework 

Base Classifier Selection 

We selected five diverse classifiers from 

distinct algorithm families to ensure maximum 

ensemble diversity: 

a) Naive Bayes (Probabilistic): 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
=
∏  𝑑
𝑖=1  𝑃(𝑥𝑖|𝑌)𝑃(𝑌)

∏  𝑑
𝑖=1  𝑃(𝑥𝑖)

 

where the conditional independence 

assumption significantly reduces 

computational complexity[31]. 

b) Support Vector Machine (SVM with RBF 

Kernel): 

𝑓(𝑥) = sign(∑  

𝑛

𝑖=1

 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏) 

The RBF kernel function is defined as: 

𝐾(𝑥, 𝑥𝑖) = exp⁡(−𝛾||𝑥 − 𝑥𝑖||
2) 

where 𝛾 controls the influence radius of each 

training example[32]. 

c) Random Forest Ensemble: 

For an ensemble of 𝑇 decision trees: 

𝑦̂ = argmax
𝑐
∑ 

𝑇

𝑡=1

𝟙(ℎ𝑡(𝑥) = 𝑐) 

where ℎ𝑡  represents the prediction of the 𝑡-th 

tree and 𝟙 is the indicator function[33]. 

d) J48 Decision Tree: 

Information Gain is calculated as: 

𝐼𝐺(𝐷, 𝐴) = 𝐸(𝐷) − ∑  

𝑣∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

|𝐷𝑣|

|𝐷|
𝐸(𝐷𝑣) 

where entropy 𝐸(𝐷) is defined as: 

𝐸(𝐷) = − ∑  

𝑐∈𝐶𝑙𝑎𝑠𝑠𝑒𝑠

𝑝𝑐log2⁡(𝑝𝑐) 

e) k-Nearest Neighbors (k-NN): 

Classification is determined by: 

𝑦̂(𝑥) = argmax
𝑐

∑  

𝑖∈𝐾𝑁𝑁(𝑥)

𝟙(𝑦𝑖 = 𝑐) 

The Euclidean distance metric is employed: 

𝑑(𝑥, 𝑥𝑖) = √∑ 

𝑑

𝑗=1

  (𝑥𝑗 − 𝑥𝑖𝑗)
2 

Voting-Based Ensemble 

In the voting approach, the final classification 

is determined by: 

𝐶𝑣𝑜𝑡𝑒(𝑥) = argmax
𝑐
∑ 

𝑚

𝑖=1

𝑤𝑖 ⋅ 𝟙(ℎ𝑖(𝑥) = 𝑐) 

where ℎ𝑖  is the 𝑖 -th classifier and 𝑤𝑖  is its 

weight (uniform or probability-based). 

Average of Probabilities Combination: 

𝑃(𝑐|𝑥) =
1

𝑚
∑ 

𝑚

𝑖=1

𝑃𝑖(𝑐|𝑥) 

Majority Voting: 

𝐶𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑥) = argmax
𝑐
∑ 

𝑚

𝑖=1

𝟙(ℎ𝑖(𝑥) = 𝑐) 

Stacking-Based Ensemble 

Stacking employs a two-level architecture. 

Level 0 consists of base learners 

{ℎ1, ℎ2, . . . , ℎ𝑚}. Level 1 uses a meta-learner 

ℎ𝑚𝑒𝑡𝑎: 

𝑦̂ = ℎ𝑚𝑒𝑡𝑎(ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑚(𝑥)) 

The meta-learner receives predictions from all 

base classifiers as input, learning optimal 

combination weights through training on 

cross-validated predictions[34]. 

Advanced Feature Engineering Framework 

Phase 1: Discretization using PKIDiscretize 

Proportional k-Interval Discretization (PKID) 

transforms continuous features into discrete 

intervals: 

For a numeric attribute with 𝑁  training 

instances: 

Number of intervals = √𝑁 

Instances per interval = √𝑁 

This approach balances bias-variance tradeoff: 

Risk = Bias
2 + Variance + Noise 

By adjusting both interval count and size 

proportionally with training data, PKID 

reduces both bias and variance 

components[35]. 
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Discretization Formula: 

For attribute 𝐴 with value range [𝑚𝑖𝑛,𝑚𝑎𝑥]: 

Interval width =
max − min

√𝑁
 

Interval𝑖 = [min + 𝑖 ⋅ width,min + (𝑖 + 1)

⋅ width), 𝑖 = 0,1, . . . , √𝑁 − 1 

Phase 2: Filter-Based Feature Selection 

Chi-square statistical test identifies irrelevant 

features: 

𝜒2 =∑ 

𝑘

𝑖=1

∑ 

𝑐

𝑗=1

(𝑂𝑖𝑗 − 𝐸𝑖𝑗)
2

𝐸𝑖𝑗
 

where 𝑂𝑖𝑗  represents observed frequency and 

𝐸𝑖𝑗 represents expected frequency for feature 𝑖 

and class 𝑗[36]. 

3.3.3 Phase 3: Wrapper-Based Feature 

Selection 

WrapperSubsetEval with Best-First search 

algorithm iteratively: 

1. Evaluates feature subsets using a 

specific learning algorithm 

2. Calculates cross-validation accuracy 

as the evaluation metric 

3. Explores the feature space guided by 

greedy search 

Best-First Search: 

𝑆best = arg⁡max
𝑆⊆𝐹

 Accuracy(ℎ(𝑆)) 

where 𝐹 is the complete feature set and ℎ(𝑆) is 

the classifier trained on subset 𝑆[37]. 

RESULTS AND ANALYSIS 

Individual Classifier Performance 

Our experiments evaluated five base classifiers on the BCDR-F03 benchmark dataset: 

Table 1. Performance of Individual Classifiers on BCDR-F03 Dataset 

Classifier Accuracy (%) TPR AUC 

Naive Bayes 76.42 0.843 0.835 

SVM (RBF Kernel) 80.51 0.901 0.788 

Random Forest 81.25 0.951 0.900 

J48 Decision Tree 78.93 0.842 0.812 

k-Nearest Neighbors 79.89 0.836 0.794 

Random Forest achieved the highest individual 

accuracy of 81.25%, while SVM achieved 

80.51%. These five diverse classifiers were 

selected for ensemble combination due to their 

complementary error patterns and strong 

individual performance. 

Ensemble Voting Results 

The voting ensemble approach combines predictions through multiple aggregation strategies: 

Table 2. Classification Accuracy of Voting-Based Ensemble Methods 

Classifier Combination Aggregation Method Accuracy (%) 

NB, SVM, RF, iBK Average Probabilities 82.88 

NB, SVM, RF, iBK Majority Voting 82.68 

SVM, RF, iBK Average Probabilities 83.02 

SVM, RF, iBK Majority Voting 83.02 

SL, RF, iBK Majority Voting 83.15 

SVM, RF Average Probabilities 81.37 

The optimal voting ensemble combining 

SVM, Random Forest, and k-NN classifiers 

with majority voting achieved 83.02% 

accuracy, representing a 2.77 percentage point 

improvement over the best individual 

classifier. 

Ensemble Stacking Results 

Stacking employs meta-learners to optimally combine base classifier predictions: 

Table 3. Classification Accuracy of Stacking-Based Ensemble Methods 

Base Classifiers Meta-Learner Accuracy (%) 

NB, SVM, RF, iBK SMO (SVM) 81.11 

NB, SVM, RF, iBK Simple Logistic 82.74 
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NB, SVM, RF, iBK SGD 81.52 

SVM, RF, iBK Simple Logistic 83.02 

SVM, RF, iBK SMO 81.11 

SVM, RF Simple Logistic 81.93 

The optimal stacking configuration using 

SVM, Random Forest, and k-NN with Simple 

Logistic meta-learner achieved 83.02% 

accuracy, matching the best voting ensemble 

performance. 

Performance Comparison 

Ensemble vs. Individual Classifiers: 

Table 4. Performance Improvement through Ensemble Methods 

Classifier Individual (%) Ensemble (%) Improvement (%) 

Naive Bayes 76.42 82.74 6.32 

SVM (RBF) 80.51 83.02 2.51 

Random Forest 81.25 83.02 1.77 

J48 78.93 81.82 2.89 

k-NN 79.89 83.02 3.13 

Average 79.40 82.72 3.32 

The ensemble methods consistently 

outperform individual classifiers across all 

algorithm families, with average improvement 

of 3.32 percentage points. 

Advanced Evaluation Metrics 

Accuracy alone can be misleading in medical applications. We therefore computed ROC-AUC, TPR, 

and FPR: 

Table 5. Comprehensive Performance Metrics: Individual vs. Ensemble Methods 

Classifier TPR FPR Accuracy (%) AUC 

Naive Bayes 0.843 0.342 76.42 0.835 

SVM (RBF) 0.901 0.326 80.51 0.788 

Random Forest 0.951 0.377 81.25 0.900 

k-NN 0.836 0.252 79.89 0.794 

Ensemble (Best) 0.939 0.323 83.02 0.909 

The proposed ensemble classifier achieves 

superior AUC (0.909) compared to individual 

classifiers, with optimal balance between TPR 

(0.939) and FPR (0.323). 

Feature Engineering Results 

Accuracy Improvement 

Table 6. Classification Accuracy with and without Feature Engineering 

Dataset Before (%) After (%) Improvement (%) 

Wisconsin 92.62 97.01 4.39 

BCDR-F03 85.41 89.51 4.10 

BCDR-D01 87.41 89.51 2.10 

Average 88.48 92.01 3.53 

Feature engineering consistently improves 

classification accuracy across all benchmark 

datasets, with average improvement of 3.53 

percentage points. 

Dimensionality Reduction Analysis 

Table 7. Feature Reduction Impact on Wisconsin Database 

Classifier Original Selected Reduction (%) Acc. Imp. (%) 

Naive Bayes 30 12 60.00 4.39 

J48 30 14 53.33 3.84 

k-NN 30 11 63.33 1.27 

SVM (RBF) 30 13 56.67 0.02 

Average 30 12.5 58.33 2.38 

The PKIDiscretize + WrapperSubsetEval 

framework achieves substantial dimensionality 

reduction (average 58.33%) while maintaining 

or improving classification accuracy. 
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Clinical Significance Metrics 

In medical diagnosis, controlling false positive rates is crucial: 

Clinical Efficiency =
TPR

FPR + 𝜖
 

Table 8. Clinical Efficiency Metrics for Diagnostic Systems 

Classifier TPR FPR Efficiency Ratio 

Naive Bayes 0.843 0.342 2.46 

SVM 0.901 0.326 2.76 

Random Forest 0.951 0.377 2.52 

k-NN 0.836 0.252 3.32 

Ensemble 0.939 0.323 2.91 

The ensemble method achieves clinical 

efficiency comparable to the best individual 

classifiers while maintaining highest TPR 

CONCLUSION 

This paper presents a comprehensive 

intelligent healthcare system for automated 

breast cancer diagnosis combining advanced 

ensemble learning with optimized feature 

engineering. Our key findings demonstrate: 

1. Ensemble Superiority: The proposed 

voting and stacking ensemble 

classifiers achieve 83.02% accuracy 

on BCDR-F03 dataset, representing 

3.32 percentage point improvement 

over best individual classifier. 

2. Feature Engineering Effectiveness: 

PKIDiscretize discretization coupled 

with WrapperSubsetEval selection 

achieves 58.33% dimensionality 

reduction while improving accuracy 

by 3.53 percentage points on average. 

3. Clinical Applicability: The ensemble 

classifier achieves TPR of 0.939, 

controlled FPR of 0.323, and AUC of 

0.909, demonstrating superior clinical 

utility for breast cancer screening 

applications. 

4. Scalability: The proposed approach 

maintains computational efficiency 

while achieving performance metrics 

suitable for clinical deployment in 

resource-constrained settings. 

The integrated framework successfully 

demonstrates that ensemble learning and 

advanced feature engineering, while effective 

individually, provide synergistic benefits when 

applied together. This research contributes 

significantly to development of intelligent 

clinical decision support systems capable of 

improving diagnostic accuracy and reducing 

healthcare burden through automation of 

preliminary screening tasks. 
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