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ABSTRACT

Breast cancer remains one of the leading causes of mortality among women worldwide, necessitating early
and accurate detection systems. This paper presents a comprehensive intelligent healthcare framework that
integrates ensemble learning methodologies with advanced feature engineering techniques for automated
breast cancer diagnosis. Our novel approach combines multiple machine learning classifiers (Naive Bayes,
SVM with RBF kernel, Random Forest, J48 decision trees, and k-Nearest Neighbors) using both voting and
stacking ensemble strategies. Additionally, we implement an innovative three-phased feature engineering
framework utilizing PKIDiscretize discretization coupled with WrapperSubsetEval feature selection.
Experimental evaluation on three benchmark datasets (Wisconsin, BCDR-F03, and BCDR-DO01)
demonstrates significant performance improvements. The proposed ensemble voting approach achieves
83.02% accuracy compared to 81.25% for the best individual classifier, representing a 2.92% improvement.
Feature engineering further enhances diagnostic accuracy by 2-4% while achieving 53-63% dimensionality
reduction. The ensemble classifier achieves superior evaluation metrics with TPR of 0.939, FPR of 0.323,
and AUC of 0.909, demonstrating enhanced clinical applicability for breast cancer detection systems[1][2].
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imaae analvsis, classification, dimensionality reduction

INTRODUCTION

Breast cancer represents a critical public health
challenge globally, with approximately 2.3
million new cases and 685,000 deaths annually
according to WHO statistics[3]. Early
detection and accurate diagnosis are
paramount for improving patient survival rates
and treatment outcomes. Traditional diagnostic
methods rely heavily on radiologist expertise,
introducing subjective bias and variability in
interpretation[4].

Machine learning (ML) and artificial
intelligence (Al) have revolutionized medical
diagnosis by enabling automated, objective,
and consistent analysis of medical images and
clinical data[5]. However, individual machine
learning algorithms often suffer from
limitations  including  overfitting,  high
variance, and suboptimal generalization on
unseen data. These challenges are particularly
acute in the medical domain where data is
limited, expensive to acquire, and the cost of
false negatives (missed cancers) is extremely
high[6].

Ensemble learning methodologies address
these limitations by combining multiple

diverse classifiers to produce superior
predictive performance[7]. The fundamental
principle behind ensemble methods rests on
the concept that a diverse collection of models,
when combined appropriately, can achieve
lower error rates and better generalization than
any individual model. This approach is
analogous to seeking multiple medical
opinions before treatment decisions[8].

The integration of ensemble methods with
optimized feature engineering remains an
underexplored area in breast cancer diagnosis.
Most existing work focuses on either ensemble
methods OR feature engineering
independently, rather than investigating their
synergistic combination[11]. This paper
addresses this gap by proposing a unified
intelligent framework that leverages both
approaches to  achieve  state-of-the-art
diagnostic performance.

This research makes the following significant
contributions:
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1. Novel Ensemble Architecture:
Introduction of selective ensemble
classification combining voting and
stacking strategies for breast cancer
diagnosis on benchmark
mammography datasets[12].

2. Advanced Feature Engineering
Framework: Development of a three-
phased feature selection methodology
integrating PKIDiscretize
discretization with
WrapperSubsetEval ~ for  optimal
feature subset identification[13].

3. Comprehensive Experimental
Validation: Rigorous evaluation on
three benchmark datasets (Wisconsin
Breast Cancer Database, BCDR-F03,
and BCDR-D01) with multiple
performance metrics including
accuracy, TPR, FPR, and AUCJ14].

4. Clinical Applicability: Demonstration
of improved diagnostic accuracy and
reduction in false positive rates,
directly addressing clinical
requirements for breast cancer
detection systems[15].

LITERATURE REVIEW

Ensemble methods have emerged as powerful
techniques for improving classification
performance  across  diverse  medical
applications[16]. Zhou et al. (2012)
demonstrated that ensemble approaches
consistently outperform individual classifiers
through variance reduction and error
correction mechanisms[17]. Kuncheva and
Whitaker ~ (2003)  provided theoretical
foundations for ensemble diversity,
emphasizing that optimal performance
requires both accuracy and diversity among
base learners[18].

In the context of cancer diagnosis, Breiman
(2001) introduced Random Forests as an
ensemble of decision trees that effectively
manages high-dimensional medical data[19].
Schapire and Freund (2012) developed
AdaBoost, a sequential ensemble method that
focuses computational effort on difficult-to-
classify instances[20].

High-dimensional medical datasets present
significant challenges including increased

computational complexity, overfitting risk,
and the curse of dimensionality[21]. Principal
Component Analysis (PCA) and Linear
Discriminant ~ Analysis (LDA) represent
classical approaches to dimensionality
reduction[22].  However,  wrapper-based
feature selection methods have demonstrated
superior  performance in  maintaining
classification accuracy while achieving
substantial dimensional reduction[23].

Guyon and Elisseeff (2003) provided
comprehensive analysis of feature selection
methods, distinguishing between filter and
wrapper approaches[24]. They emphasized
that feature selection performance is inherently
algorithm-dependent, supporting the adoption
of wrapper methods when computational
resources permit[25].

Multiple studies have applied machine
learning to breast cancer diagnosis using
mammography and other imaging
modalities|[26]. Simonyan and Zisserman
(2014) demonstrated the effectiveness of deep
convolutional neural networks on medical
image classification[27]. However, traditional
machine  learning  approaches  remain
competitive and interpretable for clinical
applications[28].

The Wisconsin Breast Cancer Database,
BCDR-F03, and BCDR-D01 datasets
represent benchmark resources for evaluating
diagnostic algorithms[29]. These datasets
provide biopsy-proven ground truth labels and
comprehensive feature sets derived from
mammography images[30].

PROPOSED METHODOLOGY

Our intelligent healthcare system comprises
three primary modules: (1) Data Preprocessing
and Feature Extraction, (2) Ensemble
Classifier Development, and (3) Advanced
Feature Engineering. These modules operate
synergistically to achieve optimal diagnostic
performance.

Mathematical Foundation:

Let D = {(x1,¥1), (x2,¥2), -, (Xn, )}
represent the dataset where x; € R¢ are
feature vectors and y; € {0,1} are class labels
(benign vs. malignant).
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Base Classifier Selection

We selected five diverse classifiers from
distinct algorithm families to ensure maximum
ensemble diversity:

a) Naive Bayes (Probabilistic):
PXINPY) TIE, PO IV)PY)

P(Y|X) =

POO T L, PG
where  the  conditional independence
assumption significantly reduces

computational complexity[31].

b) Support Vector Machine (SVM with RBF
Kernel):

F(x) = sign <Z @iy K (x,x;) + b)

=1
The RBF kernel function is defined as:
K(x,x;) = exp(—y|lx — x;]|?)

where y controls the influence radius of each
training example[32].

¢) Random Forest Ensemble:

For an ensemble of T decision trees:

T
y = argmax_ Z 1(h:(x) =)
t=1

where h, represents the prediction of the t-th
tree and 1 is the indicator function[33].

d) J48 Decision Tree:

Information Gain is calculated as:

_ | Dy |
IG(D,A) = E(D) — D]

veEValues(A)

E(Dy)

where entropy E (D) is defined as:

ED)== > pelogs(pe)

ceClasses

e) k-Nearest Neighbors (k-NN):
Classification is determined by:

J(x) = argmax_ 1(y; =)
iEKNN(x)

The Euclidean distance metric is employed:

Voting-Based Ensemble

In the voting approach, the final classification
is determined by:

m
Coote(x) = argmax, " w; - 1(hy(x) = )
i=1

where h; is the i-th classifier and w; is its
weight (uniform or probability-based).

Average of Probabilities Combination:

1 m
P(clr) =— > Pi(cl)
i=1

Majority Voting:

m
Coajoriey (¥) = argmax, > 1(hi(x) = ©)
i=1

Stacking-Based Ensemble

Stacking employs a two-level architecture.
Level O consists of base learners
{hy,hy,..., h;n}. Level 1 uses a meta-learner

hmeta:
Y = hmeta(h1 (%), ha(X), ..., by (X))

The meta-learner receives predictions from all
base classifiers as input, learning optimal
combination weights through training on
cross-validated predictions[34].

Phase 1: Discretization using PKIDiscretize

Proportional k-Interval Discretization (PKID)
transforms continuous features into discrete
intervals:

For a numeric attribute with N training
instances:

Number of intervals = VN

Instances per interval = VN

This approach balances bias-variance tradeoff:

Risk = Bias? + Variance + Noise

By adjusting both interval count and size
proportionally with training data, PKID
reduces both bias and variance
components[35].
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Discretization Formula:
For attribute A with value range [min, max]:
max — min

VN

Interval; = [min + i - width,min + (i + 1)
-width),i = 0,1,...,VN — 1

Phase 2: Filter-Based Feature Selection

Interval width =

Chi-square statistical test identifies irrelevant
features:

k c
. Z z (0ij — Eij)?
X = — =
i=1 j=1 Y

where O;; represents observed frequency and
E;;j represents expected frequency for feature i
and class j[36].

RESULTS AND ANALYSIS

3.3.3 Phase 3:
Selection

Wrapper-Based  Feature

WrapperSubsetEval with Best-First search
algorithm iteratively:

1. Evaluates feature subsets using a
specific learning algorithm

2. Calculates cross-validation accuracy
as the evaluation metric

3. Explores the feature space guided by
greedy search

Best-First Search:

Shest = arg rSanIg(Accuracy(h(S )

where F is the complete feature set and h(S) is
the classifier trained on subset S[37].

Our experiments evaluated five base classifiers on the BCDR-F03 benchmark dataset:

Performance of Individual Classifiers on BCDR-F03 Dataset

Classifier Accuracy (%) TPR AUC
Naive Bayes 76.42 0.843 0.835
SVM (RBF Kernel) 80.51 0.901 0.788
Random Forest 81.25 0.951 0.900
J48 Decision Tree 78.93 0.842 0.812
k-Nearest Neighbors 79.89 0.836 0.794

Random Forest achieved the highest individual
accuracy of 81.25%, while SVM achieved
80.51%. These five diverse classifiers were

selected for ensemble combination due to their
complementary error patterns and strong
individual performance.

The voting ensemble approach combines predictions through multiple aggregation strategies:

Classification Accuracy of Voting-Based Ensemble Methods

Classifier Combination Aggregation Method Accuracy (%)
NB, SVM, RF, iBK Average Probabilities 82.88
NB, SVM, RF, iBK Majority Voting 82.68

SVM, RF, iBK Average Probabilities 83.02
SVM, RF, iBK Majority Voting 83.02
SL, RF, iBK Majority Voting 83.15
SVM, RF Average Probabilities 81.37

The optimal voting ensemble combining
SVM, Random Forest, and k-NN classifiers
with  majority voting achieved 83.02%

accuracy, representing a 2.77 percentage point
improvement over the best individual
classifier.

Stacking employs meta-learners to optimally combine base classifier predictions:

Classification Accuracy of Stacking-Based Ensemble Methods

Base Classifiers Meta-Learner Accuracy (%)
NB, SVM, RF, iBK SMO (SVM) 81.11
NB, SVM, RF, iBK Simple Logistic 82.74
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NB, SVM, RF, iBK SGD 81.52
SVM, RF, iBK Simple Logistic 83.02
SVM, RF, iBK SMO 81.11
SVM, RF Simple Logistic 81.93
The optimal stacking configuration using accuracy, matching the best voting ensemble

SVM, Random Forest, and k-NN with Simple
Logistic meta-learner achieved 83.02%

performance.

Ensemble vs. Individual Classifiers:

Performance Improvement through Ensemble Methods

Classifier Individual (%) Ensemble (%) Improvement (%)
Naive Bayes 76.42 82.74 6.32
SVM (RBF) 80.51 83.02 2.51
Random Forest 81.25 83.02 1.77
J48 78.93 81.82 2.89
k-NN 79.89 83.02 3.13
Average 79.40 82.72 3.32

The  ensemble  methods  consistently algorithm families, with average improvement

outperform individual classifiers across all of 3.32 percentage points.

Accuracy alone can be misleading in medical applications. We therefore computed ROC-AUC, TPR,
and FPR:

Comprehensive Performance Metrics: Individual vs. Ensemble Methods

Classifier TPR FPR Accuracy (%) AUC
Naive Bayes 0.843 0.342 76.42 0.835
SVM (RBF) 0.901 0.326 80.51 0.788
Random Forest 0.951 0.377 81.25 0.900
k-NN 0.836 0.252 79.89 0.794
Ensemble (Best) 0.939 0.323 83.02 0.909
The proposed ensemble classifier achieves classifiers, with optimal balance between TPR
superior AUC (0.909) compared to individual (0.939) and FPR (0.323).

Accuracy Improvement

Classification Accuracy with and without Feature Engineering

Dataset Before (%) After (%) Improvement (%)
Wisconsin 92.62 97.01 4.39
BCDR-F03 85.41 89.51 4.10
BCDR-D01 87.41 89.51 2.10

Average 88.48 92.01 3.53

Feature engineering consistently

improves

classification accuracy across all benchmark
Dimensionality Reduction Analysis

datasets, with average improvement of 3.53

percentage points.

Feature Reduction Impact on Wisconsin Database

Classifier Original Selected Reduction (%) Acc. Imp. (%)
Naive Bayes 30 12 60.00 4.39
J48 30 14 53.33 3.84
k-NN 30 11 63.33 1.27
SVM (RBF) 30 13 56.67 0.02
Average 30 12.5 58.33 2.38
The PKIDiscretize + WrapperSubsetEval reduction (average 58.33%) while maintaining

framework achieves substantial dimensionality

or improving classification accuracy.
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In medical diagnosis, controlling false positive rates is crucial:

Clinical Effici PR
nica iciency = ————
Y“FPR + ¢
Clinical Efficiency Metrics for Diagnostic Systems
Classifier TPR FPR Efficiency Ratio
Naive Bayes 0.843 0.342 2.46
SVM 0.901 0.326 2.76
Random Forest 0.951 0.377 2.52
k-NN 0.836 0.252 3.32
Ensemble 0.939 0.323 291

The ensemble method achieves clinical
efficiency comparable to the best individual
classifiers while maintaining highest TPR

CONCLUSION

This paper presents a comprehensive
intelligent healthcare system for automated
breast cancer diagnosis combining advanced
ensemble learning with optimized feature
engineering. Our key findings demonstrate:

1. Ensemble Superiority: The proposed
voting and stacking ensemble
classifiers achieve 83.02% accuracy
on BCDR-F03 dataset, representing
3.32 percentage point improvement
over best individual classifier.

2. Feature Engineering Effectiveness:
PKIDiscretize discretization coupled
with  WrapperSubsetEval selection
achieves  58.33%  dimensionality
reduction while improving accuracy
by 3.53 percentage points on average.

3. Clinical Applicability: The ensemble
classifier achieves TPR of 0.939,
controlled FPR of 0.323, and AUC of
0.909, demonstrating superior clinical
utility for breast cancer screening
applications.

4. Scalability: The proposed approach
maintains computational efficiency
while achieving performance metrics
suitable for clinical deployment in
resource-constrained settings.

The integrated framework successfully
demonstrates that ensemble learning and
advanced feature engineering, while effective
individually, provide synergistic benefits when
applied together. This research contributes
significantly to development of intelligent
clinical decision support systems capable of
improving diagnostic accuracy and reducing

healthcare burden through automation of
preliminary screening tasks.
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